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• Project start Jan 2012 
• Project end Sep 2015 
• 25% complete 

• Barriers addressed 
– Gravimetric and volumetric 

Energy Density 
– Cycle life 
– Safety 

• Funding FY12: $450 
• Funding FY13: $450 

Timeline 

Budget 

Barriers 

• BATT NiMn Spinel Focus 
Group. 

• Battaglia, Srinivasan, Kostecki, 
Persson, Chan (LBNL), 
Beamline scientists at SSRL 
and ALS, Grey (CU), Casas-
Cabanas (CIC) 

Partners 

Overview 



3 3 

• To achieve cycle life and energy density targets 
using high capacity, high voltage electrode 
materials. 
– Establish chemistry-structure-properties correlations and assess 

origins of inefficiencies to aid in the design of better materials. 
– Discover new materials with improved chemical and 

electrochemical stability. 
– barriers: energy density, cycle life, safety 

 

• To understand the correlation between chemistry, 
phase transformations and electrode performance.  
– Develop methods to couple parameters at multiple length scales. 
– Provide inputs for electrode design and modeling teams to enable 

battery engineering improvements and life predictions. 
– barriers: energy density, cycle life 

Relevance - Objectives 
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Milestones 
Mar. 12 Complete the crystal-chemical characterization of annealed LiNi1/2Mn3/2O4 and 

identify its role on electrochemical performance.  Completed  

Sep. 12 Synthesize and physico-chemically characterize at least two different new 
phases showing an oxyfluoride network, containing lithium and a light transition 
metal.  Delayed to FY13 

Sep. 12 Identify the influence of oxide additives on the extent of electrolyte-electrode 
side reactions in spinel electrodes. Completed 

Mar. 13 Complete in operando X-ray diffraction study of at least 4 samples of 
LiNi1/2Mn3/2O4 with different degrees of order/disorder. Completed 

Apr.. 13 Develop a synthetic protocol for the extensive fluorination of Li-M-O (M=Mn, Fe, 
Cu) using low temperature treatments. On schedule 

Sep. 13 Synthesize at least two new Li-M-O-F (M=Mn, Fe, Cu) using direct high 
temperature methods. On schedule 

Sep. 13 Determine changes during cycling of the surface chemistry of LiNi1/2Mn3/2O4 
depending on coatings and doping, in coordination with the Spinel Focus 
Group. On schedule  
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• Establish composition-structure-electrochemical properties 
correlations in LiNi1/2Mn3/2O4. 
– Synthesize samples with controlled microstructure, composition, ordering to 

define the role of crystal chemical parameters. 
– Establish the role of electrode surface chemistry on in-cycle efficiencies. 
– Ultimate goal: 100% utilization at 2C rate, 85% 1st cycle efficiency and 

99.99% steady-state efficiency at C/2 rate. 
 

• Discover new electrode materials that overcome barriers of high 
voltage and capacity. 
– Leverage knowledge created with LiNi1/2Mn3/2O4. 
– Explore Li-M-O-F space (M=Fe, Mn, Cu) in search for completely new 

phases. Synergy with Materials Prediction teams in BATT. 
 

• Use synchrotron radiation to characterize electrode materials at 
multiple length scales. 
– Combination of diffraction, spectroscopy and imaging to evaluate 

inhomogeneities at nano, meso and macro scale. 
– Create a body of knowledge of electrode function that can be leveraged by 

electrode engineering and modeling teams in BATT.   

Approach/Strategy 
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Technical accomplishments: 
LiNi1/2Mn3/2O4: a material with rich crystal chemistry 

• Samples synthesized from hydroxide precursors at 500ºC≤T≤1000ºC for 12 h.  
• Clear Ni-Mn ordering transition at 700ºC. Generation of Mn3+ at high temperature.  
• NMR: Different Ni-Mn ordering schemes are possible. 

Cabana et al., Chem. Mater. 24 (2012) 2952 
Cabana et al., J. Electrochem. Soc. 158 (2011) 
A997 

Neutron Diffraction 
6Li MAS NMR 
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Technical accomplishments: 
Identification of electrochemical proxies 

2032 coin cell 
 
1M LiPF6 in  
EC/DEC (1:1 v/v) 
 
3.5 – 5 V at C/10 
(C = 147 mA/g) 

ΔV 



8 

Technical accomplishments: 
Decoupled chemical parameters by sample annealing 
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67 58 24 67 67 52 32 23 58 38 67 

BET 1.14 1.12 1.13 1.11 1.13 1.22 1.19 1.24 1.08 1.21 0.87 

Mn3+ 5.2% 2.6% 0.7% 3.1% 2.6% 1.2% 0.0% 0.4% 3.0% 0.6% 5.0% 

6Li MAS NMR 

Magnetic Susceptibility 
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Technical accomplishments: 
Electrochemistry-ordering correlations are much stronger 

than with Mn3+ 

vs. 

Kim et al., Submitted for publication 

• Correlation between disorder and better retention at higher rates.  
• Variability in Mn3+ contents within disorder (2.6-5.2%) does not produce substantial 
   differences. 
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Red:  @ C/10 
 
Green: @ C 
 
 
Blue: @ 5C 

• Disordered samples: No significant change found when cycling at restricted windows ⇒ presence of 
Mn3+ has a modest effect on rate performance (=transport). 

Rate (C) Retention @ 4.4 V Retention @ 3.5 V

1/10 97.63 % 96.35 %

1 97.25 % 96.86 %

5 101.35 % 103.51 %

Rate (C) Retention @ 4.4 V Retention @ 3.5 V

1/10 63.64 % 73.57 %

1 68.01 % 73.26 %

5 61.02 % 79.65 %

• Ordered samples: Worse retention in restricted window ⇒ is a very small amount of Mn3+ 
desirable? 

Technical accomplishments: 
Restricting voltage window offers other clues 
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Solid solution reaction (a to a’)   
Two phase reaction (a’ and b)   
Two phase reaction (b and c) 

BL11-3 

(331) (511) (440) (531) 

Al 

Charge 

Discharge 

A900 

Technical accomplishments: 
Why are ordered and disordered samples different? 
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Technical accomplishments: 
Formation of solid solutions favors high rate performance 

• Cutting voltage at 4.4 V in ordered samples leads to domains that are still two-phase ⇒ phase 
transformation hysteresis? 

Processes are fully 
reversible on discharge 
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Technical accomplishments: 
Phase transformation inhomogeneity in thick NMC electrodes 

• 150 µm thick NMC333 
electrodes supply by Battaglia 
group. 
• Charged to 1C + Relax. 
• Collected XRD in transmission 
(averaged through electrode 
depth) 
• Peak evolution during 
relaxation suggests changes in 
composition  + built-in 
inhomogeneities. 
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Technical accomplishments: 
Chemical changes at the LiNi1/2Mn3/2O4 electrode surface 
Synchrotron X-rays

Total Electron 
Yield Detector

Total Fluorescence 
Yield Detector

• Line shape changes for Ni ⇒ oxidation of Ni2+. 
• Small shoulder develops at O pre-edge ⇒ Ni-O bond nature is changing. 
• Significant differences between TEY and TFY ⇒ surface is less oxidized? 

• Proposed mechanism: material has active participation in electrolyte decomposition; 
oxidized (acidic) Ni(-O) attacks electrolyte molecules. 

Soft XAS 

BL8.0.1 
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Technical accomplishments: 
Li-M-O-F, toward chemically stable high voltage electrodes 

• Goal: search for new phases with 200+ mAh/g capacities ≡ 1+ e-/total transition metal (TM) 
reversibly cycled. 
• Needs to rely on high TM oxidation states ⇒ stabilization using F-. 
• Li-M-F: low electronic conductivity ⇒ oxyfluorides as synergistic phases. Oxyfluorides with 
semiconducting properties are known. 

Liao et al., J. Electrochem. Soc. 157 (2010), 19. 
Kobayashi et al., J. Am. Chem. Soc. 131 (2009), A355. 
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Technical accomplishments: 
Exploration of new Li-M-O-F initiated in FY12 

• Goal: explore Li-M-O-F space (M=Fe, Mn, Cu) in search for completely new phases with 
substantial amounts of F (>20% total anionic content). Synergy with Persson/Ceder (Materials 
Prediction). 
• Synthetic strategies: 

• Classical solid state: High T treatment of mixtures of LiF/MFx, Li2O/MOx, inert atmosphere. 
• Low temperature routes (<400°C): 

• Precipitation/thermolysis of precursors in high boiling point solvents. 
• Mild fluorination: Mix pre-formed Li-M-O with PVDF, heat to induce F insertion. 
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Collaboration and 
Coordination with Other 

Institutions  
• Within BATT: 

– Members of the NiMn Spinel Focus Group. 
– Dr. V. Battaglia, V. Srinivasan (LBNL): understanding of composite electrode 

function. 
– Dr. R. Kostecki (LBNL): understanding surface reactivity in cathode materials. 
– Prof. C.P. Grey (SUNY-SB): MAS-NMR of electrode materials. 
– Dr. K. Persson (LBNL), Prof. G. Ceder (MIT): Discovery of new electrode 

materials. 
– Prof. M. S. Whittingham (SUNY-Binghamton): magnetic properties of materials. 
 

• Outside BATT: 
– Dr. M. Casas-Cabanas (CIC Energigune, Spain): neutron diffraction of electrode 

materials. 
– Dr. C. Delacourt (LRCS, France): understanding of composite electrode 

function. 
– Dr. E. Chan (LBNL): synthesis of materials with controlled nanostructures. 
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• Shift attention from bulk effects to electrode surface-electrolyte in 
LiNi1/2Mn3/2O4: 
– Establish robust understanding of side reactions and their possible acid-base 

(electrode-electrolyte) origin. 
– Use X-ray spectroscopy to understand differences between materials with 

different modifications, e.g. ion substitution, coatings. 
– Develop new X-ray-based tools that increased selectivity, sensitivity and 

specificity. 
• Continue exploration of Li-M-O-F chemical spaces: 

– In collaboration with computational teams in BATT. 
– Complete the design of synthetic methods: protocols of fluorination 

reactions and colloidal synthesis to produce large amounts of nanoscale 
Li-M-F. 

– Exploration of Li-Mn/Fe/Ni-O-F using classical solid state reactions. 
• Develop a better understanding of phase transformations at the 

electrode level, with the goal of locating SOC inhomogeneities. 

Future Work 
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• Continued to uncover and describe the rich crystal-chemistry of 
LiNi0.5Mn1.5O4: 
• Annealing was used as means to control crystal-chemistry while 

“freezing” microstructure. 
• Strong correlation between rate capability (transport) and disorder. Weak 

correlation with Mn3+, although small amounts may still be necessary. 
• Crystal chemistry can have an impact through the phase transformations 

that occur during electrode operation: 
• Excellent performance of LiNi0.5Mn1.5O4 with increasing disorder is 

driven by extended solid solution region. 
• Evidence of possible chemical gradients in thick NMC electrodes 

suggested by in situ XRD. 
• Decoupling between surface and bulk oxidations states in high voltage 

electrodes suggests electrolyte decomposition is driven by acidic M-O 
surface species: 
•  Increase ionicity of the bond by using new Li-M-O-F phases. 

 

Summary 
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